61 research outputs found

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.

    Genomic organization, sequence analysis and expression of all five genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from tomato

    Full text link
    We have cloned and sequenced all five members of the gene family for the small subunit (rbcS) of ribulose-1,5-bisphosphate carboxylase/oxygenase from tomato, Lycopersicon esculentum cv. VFNT LA 1221 cherry line. Two of the five genes, designated Rbcs-1 and Rbcs-2 , are present as single genes at individual loci. Three genes, designated Rbcs-3A, Rbcs-3B and Rbcs-3C , are organized in a tandem array within 10 kb at a third independent locus. The Rbcs-2 gene contains three introns; all the other members of the tomato gene family contain two introns. The coding sequence of Rbcs-1 differs by 14.0% from that of Rbcs-2 and by 13.3% from that of Rbcs-3 genes. Rbcs-2 shows 10.4% divergence from Rbcs-3 . The exon and intron sequences of Rbcs-3A are identical to those of Rbcs-3C , and differ by 1.9% from those of Rbcs-3B . Nucleotide sequence analysis suggests that the five rbcS genes encode four different precursors, and three different mature polypeptides. S 1 nuclease mapping of the 5′ end of rbcS mRNAs revealed that the mRNA leader sequences vary in length from 8 to 75 nucleotides. Northern analysis using gene-specific oligonucleotide probes from the 3′ non-coding region of each gene reveals a four to five-fold difference among the five genes in maximal steady-state mRNA levels in leaves.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47566/1/438_2004_Article_BF00329650.pd

    Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Higher plants exhibit remarkable phenotypic plasticity allowing them to adapt to an extensive range of environmental conditions. Sorghum is a cereal crop that exhibits exceptional tolerance to adverse conditions, in particular, water-limiting environments. This study utilized next generation sequencing (NGS) technology to examine the transcriptome of sorghum plants challenged with osmotic stress and exogenous abscisic acid (ABA) in order to elucidate genes and gene networks that contribute to sorghum's tolerance to water-limiting environments with a long-term aim of developing strategies to improve plant productivity under drought.</p> <p>Results</p> <p>RNA-Seq results revealed transcriptional activity of 28,335 unique genes from sorghum root and shoot tissues subjected to polyethylene glycol (PEG)-induced osmotic stress or exogenous ABA. Differential gene expression analyses in response to osmotic stress and ABA revealed a strong interplay among various metabolic pathways including abscisic acid and 13-lipoxygenase, salicylic acid, jasmonic acid, and plant defense pathways. Transcription factor analysis indicated that groups of genes may be co-regulated by similar regulatory sequences to which the expressed transcription factors bind. We successfully exploited the data presented here in conjunction with published transcriptome analyses for rice, maize, and Arabidopsis to discover more than 50 differentially expressed, drought-responsive gene orthologs for which no function had been previously ascribed.</p> <p>Conclusions</p> <p>The present study provides an initial assemblage of sorghum genes and gene networks regulated by osmotic stress and hormonal treatment. We are providing an RNA-Seq data set and an initial collection of transcription factors, which offer a preliminary look into the cascade of global gene expression patterns that arise in a drought tolerant crop subjected to abiotic stress. These resources will allow scientists to query gene expression and functional annotation in response to drought.</p

    Nucleotide sequence of 5S ribosomal RNA from Aspergillus nidulans and Neurospora crassa.

    No full text
    The nucleotide sequences of 5S rRNA molecules isolated from the cytosol and the mitochondria of the ascomycetes A. nidulans and N. crassa were determined by partial chemical cleavage of 3'-terminally labelled RNA. The sequence identity of the cytosolic and mitochondrial RNA preparations confirms the absence of mitochondrion-specific 5S rRNA in these fungi. The sequences of the two organisms differ in 35 positions, and each sequence differs from yeast 5S rRNA in 44 positions. Both molecules contain the sequence GCUC in place of GAAC or GAUY found in all other 5S rRNAs, indicating that this region is not universally involved in base-pairing to the invariant GTpsiC sequence of tRNAs

    Octamethylbicyclo[3.2.1]octadienes from the Rhizobacterium Serratia odorifera

    No full text
    Volatile matters: A hydrocarbon containing 16 carbon atoms with an unprecedented framework, sodorifen (see structure), is the major volatile component released by the rhizobacterium Serratia odorifera. Its structure was elucidated by NMR and EIMS experiments and confirmed by synthesis
    corecore